Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Exome sequencing reveals a novel COL2A1 mutation implicated in multiple epiphyseal dysplasia.

Mutations in the COMP, COL9A1, COL9A2, COL9A3, MATN3, and SLC26A2 genes cause approximately 70% of multiple epiphyseal dysplasia (MED) cases. The genetic changes involved in the etiology of the remaining cases are still unknown, suggesting that other genes contribute to MED development. Our goal was to identify a mutation causing an autosomal dominant form of MED in a large multigenerational family. Initially, we excluded all genes known to be associated with autosomal dominant MED by using microsatellite and SNP markers. Follow-up with whole-exome sequencing analysis revealed a mutation c.2032G>A (p.Gly678Arg) in the COL2A1 gene (NCBI Reference Sequence: NM_001844.4), which co-segregated with the disease phenotype in this family, manifested by severe hip dysplasia and osteoarthritis. One of the affected family members had a double-layered patella, which is frequently seen in patients with autosomal recessive MED caused by DTDST mutations and sporadically in the dominant form of MED caused by COL9A2 defect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app