Add like
Add dislike
Add to saved papers

Statistical ranking of electromechanical dyssynchrony parameters for CRT.

Objective: Mechanical evaluation of dyssynchrony by echocardiography has not replaced ECG in routine cardiac resynchronisation therapy (CRT) evaluation because of its complexity and lack of reproducibility. The objective of this study was to evaluate the potential correlations between electromechanical parameters (atrioventricular, interventricular and intraventricular from the dyssynchrony model presented in 2000), their ability to describe dyssynchrony and their potential use in resynchrony.

Methods: 455 sets of the 18 parameters of the model obtained in 91 patients submitted to various pacing configurations were evaluated two by two using a Pearson correlation test and then by groups according to their ability to describe dyssynchrony, using the Column selection method of machine learning.

Results: The best parameter is duration of septal contraction, which alone describes 25% of dyssynchrony. The best groups of 3, 4 and ≥8 variables describe 59%, 73% and almost 100% of dyssynchrony, respectively. Left pre-ejection interval is highly and significantly correlated to a maximum of other variables, and its decrease is associated with the favourable evolution of all other correlated parameters. Increase in filling duration and decrease in duration of septum to lateral wall contraction difference are not associated with the favourable evolution of other parameters.

Conclusions: No single electromechanical parameter alone can fully describe dyssynchrony. The 18-parameter model can be simplified, but still requires at least 4-8 parameters. Decrease in left pre-ejection interval favourably drives resynchrony in a maximum of other parameters. Increase in filling duration and decrease in septum-lateral wall difference do not appear to be good CRT targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app