JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Application of Blood Flow Restriction to Optimize Exercise Countermeasures for Human Space Flight.

In recent years there has been a strong increase in publications on blood flow restriction (BFR) training. In particular, the fact that this type of training requires only low resistance to induce muscle strength and mass gains, makes BFR training interesting for athletes and scientists alike. For the same reason this type of training is particularly interesting for astronauts working out in space. Lower resistance during training would have the advantage of reducing the risk of strain-induced injuries. Furthermore, strength training with lower resistances would have implications for the equipment required for training under microgravity conditions, as significantly lower resistances have to be provided by the training machines. Even though we are only about to understand the effects of blood flow restriction on exercise types other than low-intensity strength training, the available data indicate that BFR of leg muscles is also able to improve the training effects of walking or running at slow speeds. The underlying mechanisms of BFR-induced functional and structural adaptations are still unclear. An essential aspect seems to be the premature fatigue of Type-I muscle fibers, which requires premature recruitment of Type-II muscle fibers to maintain a given force output. Other theories assume that cell swelling, anabolic hormones, myokines and reactive oxygen species are involved in the mediation of BFR training-related effects. This review article is intended to summarize the main advantages and disadvantages, but also the potential risks of such training for astronauts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app