Add like
Add dislike
Add to saved papers

A mathematical model of sonoporation using a liquid-crystalline shelled microbubble.

Ultrasonics 2019 January 23
In recent years there has been a great deal of interest in using thin shelled microbubbles as a transportation mechanism for localised drug delivery, particularly for the treatment of various types of cancer. The technique used for such site-specific drug delivery is sonoporation. Despite there being numerous experimental studies on sonoporation, the mathematical modelling of this technique has still not been extensively researched. Presently there exists a very small body of work that models both hemispherical and spherical shelled microbubbles sonoporating due to acoustic microstreaming. Acoustic microstreaming is believed to be the dominant mechanism for sonoporation via shelled microbubbles. Rather than considering the shell of the microbubble to be composed of a thin protein, which is typical in the literature, in this paper we consider the shell to be a liquid-crystalline material. Up until now there have been no studies reported in the literature pertaining to sonoporation of a liquid-crystalline shelled microbubble. A mathematical expression is derived for the maximum wall shear stress, illustrating its dependency on the shell's various material parameters. A sensitivity analysis is performed for the wall shear stress considering the shell's thickness; its local density; the elastic constant of the liquid-crystalline material; the interfacial surface tension and; the shell's viscoelastic properties. In some cases, our results indicate that a liquid-crystalline shelled microbubble may yield a maximum wall shear stress that is two orders of magnitude greater than the stress generated by commercial shelled microbubbles that are currently in use within the scientific community. In conclusion, our preliminary analysis suggests that using liquid-crystalline shelled microbubbles may significantly enhance the efficiency of site-specific drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app