Add like
Add dislike
Add to saved papers

Microvascular and systemic responses to novel PEGylated carboxyhaemoglobin-based oxygen carrier in a rat model of vaso-occlusive crisis.

Hypoxia drives sickle cell disease (SCD) by inducing sickle cell haemoglobin to polymerize and deform red blood cells (RBC) into the sickle shape. A novel carboxyhaemoglobin-based oxygen carrier (PEG-COHb; PP-007) promotes unsickling in vitro by relieving RBC hypoxia. An in vivo rat model of vaso-occlusive crisis (VOC) capable of accommodating a suite of physiological and microcirculatory measurements was used to compare treatment with PEG-COHb to a non-oxygen carrying control solution (lactated ringer's [LRS]). Male Sprague-Dawley rats were anesthetized and surgically prepared to monitor microvascular interstitial oxygenation (PISF O2 ), cardiovascular parameters and blood chemistry. Human homozygous SCD RBCs were isolated and exchange transfused into the rats until the distal microcirculation of the exteriorized spinotrapezius muscle was hypoxic and RBC aggregates were visualized. VOC was left untreated (Sham) or treated 15 min later with PEG-COHb or LRS and observed for up to 4 h. Treatment with PEG-COHb showed better improvement of PISF O2 , end-point lactate, mean arterial pressure and survival duration compared to Sham and LRS. Restoring PISF O2 was associated with relieving the RBC aggregates driving VOC, which then affected other study metrics. Compared to LRS, PEG-COHb's oxygen-carrying properties were key to improved outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app