Add like
Add dislike
Add to saved papers

An ensemble method for multi-type Gram-negative bacterial secreted protein prediction by integrating different PSSM-based features.

In Gram-negative bacteria, a wide range of proteins are secreted by highly specialized secretion systems. These secreted proteins play essential roles in the response of bacteria to their environment and also in several physiological processes such as adhesion, pathogenicity, adaptation and survival. Therefore, identifying secreted proteins in Gram-negative bacteria may assist in understanding the secretion mechanism and development of new antimicrobial strategies. Considering that a single-feature model is less likely to comprehensively cover this information, three kinds of feature models were used in this paper to represent protein samples by composition analysis, correlation analysis and smoothing encoding method on position-specific scoring matrix profiles. A support vector machine-based ensemble method with these hybrid features was developed to predict multi-type Gram-negative bacterial secreted proteins. Finally, our method achieves overall accuracies of 97.09% and 96.51% using an independent dataset test and jackknife test on a public test dataset, which are 3.49% and 2.32% higher, respectively, than results obtained by other methods. These results show the effectiveness and stability of the proposed ensemble method. It is anticipated that our method will provide useful information for further research on bacterial secreted proteins and secreted systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app