Add like
Add dislike
Add to saved papers

Mechanical behavior of metastatic femurs through patient-specific computational models accounting for bone-metastasis interaction.

This paper proposes a computational model based on a finite-element formulation for describing the mechanical behavior of femurs affected by metastatic lesions. A novel geometric/constitutive description is introduced by modelling healthy bone and metastases via a linearly poroelastic constitutive approach. A Gaussian-shaped graded transition of material properties between healthy and metastatic tissues is prescribed, in order to account for the bone-metastasis interaction. Loading-induced failure processes are simulated by implementing a progressive damage procedure, formulated via a quasi-static displacement-driven incremental approach, and considering both a stress- and a strain-based failure criterion. By addressing a real clinical case, left and right patient-specific femur models are geometrically reconstructed via an ad-hoc imaging procedure and embedding multiple distributions of metastatic lesions along femurs. Significant differences in fracture loads, fracture mechanisms, and damage patterns, are highlighted by comparing the proposed constitutive description with a purely elastic formulation, where the metastasis is treated as a pseudo-healthy tissue or as a void region. Proposed constitutive description allows to capture stress/strain localization mechanisms within the metastatic tissue, revealing the model capability in describing possible strain-induced mechano-biological stimuli driving onset and evolution of the lesion. The proposed approach opens towards the definition of effective computational strategies for supporting clinical decision and treatments regarding metastatic femurs, contributing also to overcome some limitations of actual standards and procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app