Add like
Add dislike
Add to saved papers

The construction and effect of physical properties on intracellular drug delivery of poly(amino acid) capsules.

Constructing intracellular degradable drug delivery vehicles is critical to fully exert the function of loaded drugs. Considering the poly (amino acid) is sensitively degradable to acid and enzyme which indwell in the mature lysosome, we here presented the poly(amino acid) capsules constructed by the synthetic poly(amino acid), (poly-glutamic acid, PGA and poly-ornithine, POR). The fabrication of Dox loaded poly (amino acid) capsules was demonstrated, and was thoroughly characterized by various techniques, including Zetasizer, SEM, TEM, fluorescent microscopy, and confocal laser scan microscopy. By controlling fabrication process, we tuned the carriers with different physical properties (charges and stiffness). Then, we thoroughly investigated the effects of these properties on the intracellular uptake and anti-cancer abilities of various carriers@Dox. In addition, the degradability of poly(amino acid) capsules was studied to reveal the release profiles of the carriers with or without templates from the side aspect. We found the positively charged and stiffer carriers mainly contributed to the cellular uptake process and amount, while both the uptake amount and degradability of the endocytosed carriers@Dox played a critical role on the cytotoxicity. We believe the findings here could pave the way for designing poly(amino acid) capsules or other degradable polymers based on poly(amino acid) as the drug delivery vehicles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app