Add like
Add dislike
Add to saved papers

Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control.

Effective bleeding control is a major concern in trauma and major surgeries. Chitosan (Ch) as hemostatic agent has been widely used and when applied at the site of injury it acts by aggregating blood cells and forming a plug. Our prime interest is to improve the blood clotting property of Ch hydrogel. Incorporation of nanobioglass (nBG) with silica (activate coagulation factor XII), calcium (activate intrinsic pathway) and phosphate (initiates extrinsic pathway) ions into Ch hydrogel (protonated NH2 group) would act at the same time and bring about rapid blood clot formation. Sol-gel method was followed to synthesize nBG particles and its particle size was found to be 14 ± 3 nm. 2%Ch-5%nBG hydrogel was then prepared and studied using SEM and FTIR. The prepared hydrogel was injecable and was also cytocompatible with HUVEC. In in vitro blood clotting study and in vivo major organ injury model, 2%Ch-5%nBG hydrogel formed rapid blood clot than 2%Ch hydrogel. Hence, 2%Ch-5%nBG hydrogel might have great potential to achieve effective bleeding control during critical situations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app