Add like
Add dislike
Add to saved papers

Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse.

The basilar pontine nucleus (PN) is the key relay point for the cerebrocerebellar link. However, the projection pattern of pontocerebellar mossy fiber axons, which is essential in determining the functional organization of the cerebellar cortex, has not been fully clarified. We reconstructed the entire trajectory of 25 single pontocerebellar mossy fiber axons labeled by localized injection of biotinylated dextran amine into various locations in the PN and mapped all their terminals in an unfolded scheme of the cerebellum in 10 mice. The majority of axons (20/25 axons) entered the cerebellum through the middle cerebellar peduncle contralateral to the origin, while others entered through the ipsilateral pathway. A small number of axons (1/25 axons) had collaterals terminating in the cerebellar nuclei. Axons projected mostly to a combination of lobules, often bilaterally, and terminated in multiple zebrin stripes, more frequently in zebrin-positive stripes (83.9%) than in zebrin-negative stripes, with 66.5 mossy fiber terminals on the average. Axons originating from the rostromedial, central and caudal PN mainly terminated in the paraflocculus, crus I and lobule VIb-c, in the simplex lobule, crus II and paramedian lobule, and in lobules II-VIa, VIII and copula pyramidis, respectively. The results suggest that the interlobular branching pattern of pontocerebellar axons determines the group of cerebellar lobules that are involved in a related functional localization of the cerebellum. In the hemisphere, crus I may be functionally distinct from neighboring lobules (simple lobule and crus II) in the mouse cerebellum based on the pontocerebellar axonal projection pattern. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app