JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The ERK Pathway: Molecular Mechanisms and Treatment of Depression.

Molecular Neurobiology 2019 Februrary 10
Major depressive disorder is a chronic debilitating mental illness. Its pathophysiology at cellular and molecular levels is incompletely understood. Increasing evidence supports a pivotal role of the mitogen-activated protein kinase (MAPK), in particular the extracellular signal-regulated kinase (ERK) subclass of MAPKs, in the pathogenesis, symptomatology, and treatment of depression. In humans and various chronic animal models of depression, the ERK signaling was significantly downregulated in the prefrontal cortex and hippocampus, two core areas implicated in depression. Inhibiting the ERK pathway in these areas caused depression-like behavior. A variety of antidepressants produced their behavioral effects in part via normalizing the downregulated ERK activity. In addition to ERK, the brain-derived neurotrophic factor (BDNF), an immediate upstream regulator of ERK, the cAMP response element-binding protein (CREB), a transcription factor downstream to ERK, and the MAPK phosphatase (MKP) are equally vulnerable to depression. While BDNF and CREB were reduced in their activity in the prefrontal cortex and hippocampus of depressed animals, MKP activity was enhanced in parallel. Chronic antidepressant treatment readily reversed these neurochemical changes. Thus, ERK signaling in the depression-implicated brain regions was disrupted during the development of depression, which contributes to the long-lasting and transcription-dependent neuroadaptations critical for enduring depression-like behavior and the therapeutic effect of antidepressants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app