Add like
Add dislike
Add to saved papers

Multimodal neuroimaging study reveals dissociable processes between structural and functional networks in patients with subacute intracerebral hemorrhage.

Emerging evidence has revealed widespread stroke-induced brain dysconnectivity, which leads to abnormal network organization. However, there are apparent discrepancies in dysconnectivity between structural connectivity and functional connectivity studies. In this work, resting-state fMRI and structural diffusion tensor imaging were obtained from 26 patients with subacute (10-14 days) intracerebral hemorrhage (ICH) and 20 matched healthy participants (patients/controls = 21/18 after head motion rejection). Graph theoretical approaches were applied to multimodal brain networks to quantitatively compare topological properties between both groups. Prominent small-world properties were found in the structural and functional brain networks of both groups. However, a significant deficit in global integration was revealed in the structural brain networks of the patient group and was associated with more severe clinical manifestations of ICH. Regarding ICH-related nodal deficits, reduced nodal interconnectivity was mainly detected in motor-related regions. Moreover, in the functional brain network, topological properties were mostly comparable between patients with ICH and healthy participants. Beyond the prominent small-world architecture in multimodal brain networks, there are dissociable alterations between structural and functional brain networks in patients with ICH. These findings highlight the potential for using aberrant network metrics as neural biomarkers for evaluation of the severity of ICH. Graphical abstract Intracerebral hemorrhage (ICH) also known as cerebral bleed, a major type of stroke, would significantly affect brain structure and function. Using multimodal neuroimaging, Zhang et al. investigate the ICH-related dysconnectivity in structural and functional brain networks and show a significantly disintegrated structural brain network with a preserved functional network topology in subacute phase (10-14 days).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app