Add like
Add dislike
Add to saved papers

Artificial Fusion of mCherry Enhanced Solubility and Stability of Trehalose Transferase.

LeLoir glycosyltransferases are important biocatalysts for the production of glycosidic bonds in natural products, chiral building blocks, and pharmaceuticals. Trehalose transferase (TreT) is of particular interest since it catalyzes the stereo- and enantioselective α,α-(1→1)-coupling of a nucleotide sugar donor and monosaccharide acceptor for the synthesis of disaccharide derivatives. Heterologously expressed thermophilic trehalose transferases were found to be intrinsically aggregation-prone and are mainly expressed as catalytically active inclusion bodies in E. coli To disfavor protein aggregation, the thermostable protein mCherry was explored as a fluorescent protein tag. The fusion of mCherry to trehalose transferase from Pyrobaculum yellowstonensis ( Py TreT) demonstrated increased protein solubility. Chaotropic agents like guanidine or the divalent cations Mn(II), Ca(II), and Mg(II) enhanced the enzyme activity of the fusion protein. The thermodynamic equilibrium constants Keq for the reversible synthesis of trehalose from glucose and a nucleotide sugar were determined both in the synthesis and hydrolysis direction utilizing UDP-glucose and ADP-glucose respectively. UDP-glucose was shown to achieve higher conversions than ADP-glucose, highlighting the importance of the choice of nucleotide sugars for LeLoir glycosyltransferases under thermodynamic control. Importance The heterologous expression of proteins in Escherichia coli is of great relevance for their functional and structural characterization and applications. However, the formation of insoluble inclusion bodies is observed in approximately 70% of all cases, and the subsequent effects can range from reduced soluble protein yields to a complete failure of the expression system. Here we present an efficient methodology for the production and analysis of a thermostable, aggregration-prone trehalose transferase (TreT) from Pyrobaculum yellowstonensis via its fusion with mCherry as a thermostable fluorescent protein tag. This fusion strategy allowed for increased enzyme stability and solubility and could be applied to other (thermostable) proteins, allowing rapid visualization and quantification of the mCherry-fused protein of interest. Finally, we have demonstrated that the enzymatic synthesis of trehalose from glucose and a nucleotide sugar is reversible by approaching the thermodynamic equilibrium in both the synthesis and hydrolysis direction. Our results show, that uridine establishes an equilibrium constant which is more in favor of the product trehalose, than when adenosine is employed as nucleotide under identical conditions. The influence of different nucleotides on the reaction can be generalized for all LeLoir glycosyltransferases under thermodynamic control, as the position of the equilibrium solely depends on the reaction conditions and is not affected by the nature of the catalyst.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app