Add like
Add dislike
Add to saved papers

Copper ions induce dityrosine-linked dimers in human but not in murine islet amyloid polypeptide (IAPP/amylin).

Dysregulation and aggregation of the peptide hormone IAPP (islet amyloid polypeptide, a.k.a. amylin) into soluble oligomers that appear to be cell-toxic is a known aspect of diabetes mellitus (DM) Type 2 pathology. IAPP aggregation is influenced by several factors including interactions with metal ions such as Cu(II). Because Cu(II) ions are redox-active they may contribute to metal-catalyzed formation of oxidative tyrosyl radicals, which can generate dityrosine cross-links. Here, we show that such a process, which involves Cu(II) ions bound to the IAPP peptide together with H2 O2 , can induce formation of large amounts of IAPP dimers connected by covalent dityrosine cross-links. This cross-linking is less pronounced at low pH and for murine IAPP, likely due to less efficient Cu(II) binding. Whether IAPP can carry out its hormonal function as a cross-linked dimer is unknown. As dityrosine concentrations are higher in blood plasma of DM Type 2 patients - arguably due to disease-related oxidative stress - and as dimer formation is the first step in protein aggregation, generation of dityrosine-linked dimers may be an important factor in IAPP aggregation and thus relevant for DM Type 2 progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app