Add like
Add dislike
Add to saved papers

Uncertainties of synchrotron microCT-based digital volume correlation bone strain measurements under simulated deformation.

Journal of Biomechanics 2019 January 31
Digital Volume Correlation (DVC) is used to measure internal displacements and strains in bone. Recent studies have shown that Synchrotron radiation micro-computed tomography (SR-microCT) can improve the accuracy and precision of DVC. However, only zero-strain or virtually-moved test have been used to quantify the DVC uncertainties, leading to potential underestimation of the measurement errors. In this study, for the first time, the uncertainties of a global DVC approach have been evaluated on repeated SR-microCT scans of bovine cortical bone (voxel size: 1.6 μm), which were virtually deformed for different magnitudes and along different directions. The results showed that systematic and random errors of the normal strain components along the deformation direction were higher than the errors along unstrained directions. The systematic percentage errors were smaller for larger virtual deformations. The random percentage error was in the order of 10% of the virtual deformation. However, higher errors were localized at the boundary of the volumes of interest, perpendicular to the deformation direction. When only the central region of the samples was considered (100 µm layers removed from the borders where the deformation was applied), the errors in the direction of virtual deformation were comparable to the errors in the unstrained directions. In conclusion, the method presented to estimate the uncertainties of DVC is suitable for testing anisotropic specimens as cortical bone. The good agreement between the uncertainties in measurements of strain components obtained with this approach and with the simpler zero-strain-test suggests that the latter is adequate in the tested deformation scenarios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app