Add like
Add dislike
Add to saved papers

Molecular data reveal cryptic speciation and host specificity in Toxascaris leonina (Nematoda: Ascarididae).

Toxascaris leonina (Ascarididae) is a cosmopolitan and polyxenical parasite whose host are canids and felids. To date, molecular phylogenetic studies included toxascarid representatives collected only from dogs or felids, therefore the intra-species differences between T. leonina collected from different host species has not been noticed. In this paper, we test the hypothesis of cryptic speciation in the T. leonina complex based on extended sequence data (ITS1, nad1, cox1) and individuals collected from dogs, felids and foxes. Phylogenetic analysis clustered T. leonina representatives into three well-supported clades depending on their host species, i.e. dogs and wolves, wild felids and foxes. Both genetic distances and the barcoding-gap analysis strongly support the species status of populations inhabiting different hosts. The results suggest additional genetic separation in felids. However, to determine the actual size of the Toxascaris complex, it would be necessary to analyse individuals collected from other canid and felid Toxascaris leonina host species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app