Add like
Add dislike
Add to saved papers

2D selenium allotropes from first principles and swarm intelligence.

Combining the particle-swarm optimization method with first-principles calculations, we explore a new category of two-dimensional (2D) monolayers composed of solely the element selenium. Three stable structures are screened from outputs of crystal search computations, namely T-Se (1T-MoS2 -like), C-Se (tiled 1D helical chain), and S-Se (square structure). Phonon calculations, as well as formation energy calculations have been performed to confirm the stability of the three phases. The electronic structure calculations show that both T-Se and C-Se are indirect-band-gap semiconductors, with gap values of 1.11 eV and 2.64 eV respectively when using the hybrid HSE06 functional. In particular, C-Se has a centrosymmetry-breaking structure which provides a spontaneous in-plane ferroelectric polarization of about 2.68  ×  10-10 C m-1 per layer. Interestingly, S-Se has a Dirac cone that can open up a band gap of 0.11 eV if spin-orbit coupling is included. The tilted Dirac cone of S-Se shows anisotropic band dispersion as characterized with different Fermi velocities of 1.26  ×  106 and 0.24  ×  106 m s-1 around the Dirac point. Our works enrich the family of 2D materials of selenium allotropes and show that their versatile properties could give rise to potential application in various fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app