Add like
Add dislike
Add to saved papers

Discrete Latent Factor Model for Cross-Modal Hashing.

Due to its storage and retrieval efficiency, cross-modal hashing (CMH) has been widely used for cross-modal similarity search in many multimedia applications. According to the training strategy, existing CMH methods can be mainly divided into two categories: relaxation-based continuous methods and discrete methods. In general, the training of relaxation-based continuous methods is faster than discrete methods, but the accuracy of relaxation-based continuous methods is not satisfactory. On the contrary, the accuracy of discrete methods is typically better than relaxation-based continuous methods, but the training of discrete methods is very time-consuming. In this paper, we propose a novel CMH method, called discrete latent factor model based cross-modal hashing (DLFH), for cross modal similarity search. DLFH is a discrete method which can directly learn the binary hash codes for CMH. At the same time, the training of DLFH is efficient. Experiments show that DLFH can achieve significantly better accuracy than existing methods, and the training time of DLFH is comparable to that of relaxation-based continuous methods which are much faster than existing discrete methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app