Add like
Add dislike
Add to saved papers

Multiplicative noise is beneficial for the transmission of sensory signals in simple neuron models.

Bio Systems 2019 Februrary 6
We study simple integrate-and-fire type models with multiplicative noise and consider the transmission of a weak and slow signal, i.e. a signal that evokes a small modulation of the instantaneous firing rate on time scales that are much larger than the membrane time scale and the mean interspike interval. The specific question of interest is whether and how the state-dependence of the noise can be optimized with respect to information transmission. First, in a simple model in which the noise intensity varies linearly with the state variable, we show analytically that multiplicative fluctuations may benefit the signal transfer and we elucidate the mechanism for this improvement. In a conductance-based integrate-and-fire model with synaptically filtered shot-noise input, we show by means of extended numerical simulations that also in a biophysically more relevant situation, multiplicative noise can enhance the signal-to-noise ratio. Our results shed light on a so far unexplored aspect of stochastic signal transmission in neural systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app