Add like
Add dislike
Add to saved papers

A novel method to efficiently isolate medullary thymic epithelial cells from murine thymi based on UEA-1 MicroBeads.

OBJECTIVE: The central mechanism for establishing a self-tolerant and functional T cell repertoire includes the promiscuous expression of otherwise tissue-restricted proteins by medullary thymic epithelial cells (TEC). We here demonstrate a novel and highly efficient method for isolating this rare key cell type.

METHODS: We combined the enrichment of medullary TEC via UEA-1 MicroBeads with the subsequent depletion of residual CD45+ hematopoietic cells via specific size exclusion and compared our results to the standard Percoll enrichment method and isolation procedure via flow cytometric cell sorting.

RESULTS: The addition of 2 μl UEA-1 MicroBeads per 108 thymus cells turned out best for optimal enrichment (an average of 22% purity compared to 1.2% for Percoll) and yield (an average of 1.73 × 105 medullary TEC per thymus compared to 5.16 × 104 for Percoll). After depletion of residual CD45+ cells, our method not only reached a purity of 75.5% but also turned out less stressful for the cells as compared to flow cytometric cell sorting.

CONCLUSION: We here provide a fast and versatile procedure for enriching medullary TEC that yields higher purity and recovery rates than the standard Percoll enrichment method Our enrichment procedure in combination with CD45+ depletion via specific size exclusion is comparable to the current gold standard flow cytometric cell sorting method.

SIGNIFICANCE STATEMENT: We developed a fast and versatile procedure to isolate a high number medullary TEC to investigate the biochemical processes of medullary TEC in more depths.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app