JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Endogenous fluorescence can differentiate the keratoconic cornea.

The purpose of the study was to investigate the endogenous fluorescence of the keratoconic cornea in order to analyze changes in the spectra due to the keratoconic stroma abnormalities. Twenty-two corneal buttons obtained from patients with keratoconus (KC, N = 22) at the time of penetrating keratoplasty were used. As a reference, twelve normal corneas (N = 12): ten from the Eye Bank and two from enucleated eyes due to choroidal melanoma were used. The fluorescence excitation/emission matrices (EEM) in the ranges of 250-400/260-600 nm were recorded. Healthy cornea, keratoconic cornea and sclera showed three main EEM bands, which correspond to the following fluorophores: tryptophan residues in the proteoglycan fraction of corneal/scleral stromas, naturally occurring collagen cross-links and the NAD(P)H fraction present in the metabolically active cells. Relative intensity factors S1 , S2 and S3 describing the contribution of each kind of fluorophore to the total fluorescence of the tissue were calculated. Normal and keratoconic corneas show qualitatively similar fluorescence matrices, but the statistically significant differences in the mean values of the S1 , S2 and S3 parameters for the KC and normal corneas were observed indicating changes in contribution of different fluorophores to the whole fluorescence of the tissue. Moreover, differences between multidimensional distribution of the relative intensity factors S1 , S2 and S3 between these groups were demonstrated (p < 0.001). In conclusions: Differences in the relative intensity factors calculated on a basis of the fluorescence spectra can correspond to the changes found in the KC stroma regarding natural collagen cross-links and the proteoglycan fraction. These parameters well differentiate the KC and normal corneas that could serve as an additional tool for the keratoconus characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app