Add like
Add dislike
Add to saved papers

Analyzing change in protein stability associated with Single Point Deletions in a newly defined protein structure database.

Protein backbone alternation due to insertion/deletion or mutation operation often results in a change of fundamental biophysical properties of proteins. The proposed work intends to encode the protein stability changes associated with single point deletions (SPDs) of amino acids in proteins. The encoding will help in the primary screening of detrimental backbone modifications before opting for expensive in-vitro experimentations. In the absence of any benchmark database documenting SPDs, we curate a dataset containing SPDs that lead to both folded conformations and unfolded state. We differentiate these SPD instances with the help of simple structural and physicochemical features and eventually classify the foldability resulting out of SPDs using a Random Forest classifier and an Elliptic Envelope based outlier detector. Adhering to leave one out cross validation, the accuracy of the Random Forest classifier and the Elliptic Envelope is of 99.4% and 98.1% respectively. The newly defined database and the delineation of SPD instances based on its resulting foldability provide a head start towards finding a solution to the given problem.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app