Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Small Molecule SOS1 Agonists Modulate MAPK and PI3K Signaling via Independent Cellular Responses.

ACS Chemical Biology 2019 March 16
Activating mutations in RAS can lead to oncogenesis by enhancing downstream signaling, such as through the MAPK and PI3K pathways. Therefore, therapeutically targeting RAS may perturb multiple signaling pathways simultaneously. One method for modulating RAS signaling is to target the activity of the guanine nucleotide exchange factor SOS1. Our laboratory has discovered compounds that bind to SOS1 and activate RAS. Interestingly, these SOS1 agonist compounds elicit biphasic modulation of ERK phosphorylation and simultaneous inhibition of AKT phosphorylation levels. Here, we utilized multiple chemically distinct compounds to elucidate whether these effects on MAPK and PI3K signaling by SOS1 agonists were mechanistically linked. In addition, we used CRISPR/Cas9 gene-editing to generate clonally derived SOS1 knockout cells and identified a potent SOS1 agonist that rapidly elicited on-target molecular effects at substantially lower concentrations than those causing off-target effects. Our findings will allow us to further define the on-target utility of SOS1 agonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app