Add like
Add dislike
Add to saved papers

Estimation of greenhouse gas emissions from a wastewater treatment plant using membrane bioreactor technology.

Wastewater treatment plants (WWTPs) using membrane bioreactor (MBR) technology have been considered a significant source of greenhouse gas (GHG) emissions. This study chose a small-scale wastewater treatment plant using MBR technology to estimate its potential for GHG emissions. The total GHG emissions from this wastewater treatment plant ranged from 2,802 to 11,946 kg CO2 -eq/month within the 4-year study period, and they were mainly attributable to electricity consumption (79.94%) followed by chemical usages (17.13%) and on-site GHG emissions (2.93%). The on-site GHG emissions varied monthly, but most of them ranged from 80 to 160 kg CO2 -eq/month. The aeration tank was an important operating unit for GHG emissions. Off-site GHG emissions mainly came from carbon dioxide (CO2 ) emissions resulting from electricity consumption. The results of this study provide useful information about the potential of GHG emissions from WWTPs using MBR technology and indicate that WWTPs can be sustainably managed. PRACTITIONER POINTS: Wastewater treatment plants have been considered a source of greenhouse gas emissions. Total greenhouse gas emissions from the wastewater treatment plants using membrane bioreactor were mainly attributable to electricity consumption. On-site greenhouse gas emissions were relatively insignificant in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app