Add like
Add dislike
Add to saved papers

Detecting a zeptogram of pyridine with a hybrid plasmonic-photonic nanosensor.

ACS Sensors 2019 Februrary 9
Thanks to their small sensing volume, nanosensors based on localized surface plasmon resonances (LSPR) allow the detection of minute amounts of analytes, down to the single molecule limit. However, the detected analytes are often large molecules, such as proteins. The detection of small molecules remains largely unexplored. Here, we use a hybrid photonic-plasmonic nanosensor to detect a small target molecule (pyridine). The sensor's design is based on a dielectric photonic microstructure acting as an antenna, which efficiently funnels light towards a plasmonic transducer and enhance the detection efficiency. This sensor exhibits a limit of detection as small as 10-14 mol.L-1 . Using a calibration procedure based on electrodynamical numerical simulations, we compute the number of detected molecules. This yields a limit of detection in mass of 4 zeptograms (1 zg = 10-21 g), a record value for plasmonic molecular sensors. Our system can hence be seen as an optical molecular weighing scale, enabling room temperature detection of mass at the zeptogram scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app