Add like
Add dislike
Add to saved papers

On the nature of the positronic bond.

Recently it has been proposed that the positron, the anti-particle analog of the electron, is capable of forming an anti-matter bond in a composite system of two hydride anions and a positron [Angew. Chem. Int. Ed. 57, 8859-8864 (2018)]. In order to dig into the nature of this novel bond the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) is applied to this positronic system. The topological analysis reveals that this species is composed of two atoms in molecules, each containing a proton and half of the electronic and the positronic populations. Further analysis elucidates that the electron exchange phenomenon is virtually non-existent between the two atoms and no electronic covalent bond is conceivable in between. On the other hand, it is demonstrated that the positron density enclosed in each atom is capable of stabilizing interactions with the electron density of the neighboring atom. This electrostatic interaction suffices to make the whole system bonded against all dissociation channels. Thus, the positron indeed acts like an anti-matter glue between the two atoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app