Add like
Add dislike
Add to saved papers

Machine learning identifies "rsfMRI epilepsy networks" in temporal lobe epilepsy.

European Radiology 2019 Februrary 9
OBJECTIVES: Experimental models have provided compelling evidence for the existence of neural networks in temporal lobe epilepsy (TLE). To identify and validate the possible existence of resting-state "epilepsy networks," we used machine learning methods on resting-state functional magnetic resonance imaging (rsfMRI) data from 42 individuals with TLE.

METHODS: Probabilistic independent component analysis (PICA) was applied to rsfMRI data from 132 subjects (42 TLE patients + 90 healthy controls) and 88 independent components (ICs) were obtained following standard procedures. Elastic net-selected features were used as inputs to support vector machine (SVM). The strengths of the top 10 networks were correlated with clinical features to obtain "rsfMRI epilepsy networks."

RESULTS: SVM could classify individuals with epilepsy with 97.5% accuracy (sensitivity = 100%, specificity = 94.4%). Ten networks with the highest ranking were found in the frontal, perisylvian, cingulo-insular, posterior-quadrant, thalamic, cerebello-thalamic, and temporo-thalamic regions. The posterior-quadrant, cerebello-thalamic, thalamic, medial-visual, and perisylvian networks revealed significant correlation (r > 0.40) with age at onset of seizures, the frequency of seizures, duration of illness, and a number of anti-epileptic drugs.

CONCLUSIONS: IC-derived rsfMRI networks contain epilepsy-related networks and machine learning methods are useful in identifying these networks in vivo. Increased network strength with disease progression in these "rsfMRI epilepsy networks" could reflect epileptogenesis in TLE.

KEY POINTS: • ICA of resting-state fMRI carries disease-specific information about epilepsy. • Machine learning can classify these components with 97.5% accuracy. • "Subject-specific epilepsy networks" could quantify "epileptogenesis" in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app