Add like
Add dislike
Add to saved papers

Hydroxyl-substituted double Schiff-base condensed 4-piperidone/cyclohexanones as potential anticancer agents with biological evaluation.

Novel hydroxyl-substituted double Schiff-base 4-piperidone/cyclohexanone derivatives, 3a-e, 4a-e, 5a-d, and 6a-c, were synthesized and fully characterized by 1 H NMR, IR and elemental analysis. The cytotoxicity against human carcinoma cell lines A549, SGC7901, HePG2, HeLa, K562, THP-1 and non-malignant LO2 cell lines were evaluated. The results showed 4-piperidinone derivatives displayed better cytotoxicity than cyclohexanone derivatives, especially for 3,4,5-trihydroxyphenyl-substituted BAP 5c. The western blot and flow cytometry results proved 5c can effectively promote cell apoptosis through up-regulating Bax protein and down-regulating Bcl-2 protein expression. Molecular docking modes showed that 5c could reasonably bind to the active site of Bcl-2 protein through strong intermolecular hydrogen bonds and significant hydrophobic effect. In vivo, 5c can effectively suppress the growth of HepG2 xenografts without apparent body weight changes. This study indicates that 5c can be a potential anticancer agent for early treatment of liver cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app