Add like
Add dislike
Add to saved papers

Pulsed Microwave-Pumped Drug-Free Thermoacoustic Therapy by Highly Biocompatible and Safe Metabolic Polyarginine Probes.

Nano Letters 2019 Februrary 14
Serious side effects are plaguing traditional chemotherapy, and the development of drug-free treatment is expected to ease the dilemma. Herein, drug-free polyarginine probes are fabricated from the co-polymerization of arginine monomer and slight amount of rhodamine B monomer, which are efficient for thermoacoustic imaging and therapy with high biocompatibility and safe metabolism. Polyarginine can be strongly pumped upon pulsed microwave irradiation, generating significant thermoacoustic shockwaves, namely thermocavitation, which can in situ destroy mitochondria to initiate programmed cancer cell apoptosis. In vivo explorations demonstrate the high theranostic efficiency for cancer thermoacoustic imaging and cancer inhibition, exhibiting low systemic cytotoxicity and good biocompatibility after systemic administration. Herein, pulsed microwave-pumped biocompatible polyarginine is promising for drug-free precision theranostics without any detectable side effects, and the deep penetration potency of microwave makes it potentially able to treat deep-seated diseases in future biomedicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app