Add like
Add dislike
Add to saved papers

Optimized culturing conditions for an algicidal bacterium Pseudoalteromonas sp. SP48 on harmful algal blooms caused by Alexandrium tamarense.

MicrobiologyOpen 2019 Februrary 8
Bacteria play an important role in preventing algal blooms and reducing their harm to the environment. To improve the algicidal activity of Pseudoalteromonas SP48 which had an inhibition effect on dinoflagellate Alexandrium tamarense, its growth medium and fermentation conditions were optimized for this bacterium. In this study, we used two steps to establish the optimum conditions. First, the proper proportion of medium was selected based on an orthogonal design. Then, the fermentation conditions were further optimized through uniform design in an enlarged 5L bioreactor. To test the algicidal ability of Pseudoalteromonas SP48 under the optimum conditions, algal cell morphology was observed by transmission electron microscopy (TEM). After the orthogonal design, we found that the optimum medium was [0.7% (m/v) tryptone, 0.2% (m/v) soluble starch, 0.2% (m/v) sucrose, 0.1% (m/v) FeSO4 , and 1.2% (m/v) K2 HPO4 ] for Pseudoalteromonas SP48 growth. Based on these results, optimum fermentation conditions were further explored in a 5L fermentation cylinder using a uniform design; the influence of variables such as incubation time, carbon type, and rotation speed were tested. The optimal fermentation conditions were fermentation time (42 hr), tryptone (1.1%), seeding volume (1.4 × 1013  cells), and rotation speed (250 r/min). Under these established optimum conditions, the biomass of strain SP48 increased by 79.2% and its lethal dose 50% (LD50 ) decreased by 54.0%, respectively. The TEM results showed that compared with the control group, the cell wall and cell membrane of A. tamarense were significantly damaged, and the structure and shape of the organelles were destroyed by algicidal bacteria of Pseudoalteromonas SP48. Overall, our results demonstrate that the optimized culture conditions could significantly enhance the algicidal activity of Pseudoalteromonas SP48 against a harmful dinoflagellate, such as A. tamarense. It will effectively provide a scientific foundation for both production of algicidal substances and HABs control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app