Add like
Add dislike
Add to saved papers

Highly-accelerated volumetric brain examination using optimized wave-CAIPI encoding.

BACKGROUND: Rapid volumetric imaging protocols could better utilize limited scanner resources.

PURPOSE: To develop and validate an optimized 6-minute high-resolution volumetric brain MRI examination using Wave-CAIPI encoding.

STUDY TYPE: Prospective.

POPULATION/SUBJECTS: Ten healthy subjects and 20 patients with a variety of intracranial pathologies.

FIELD STRENGTH/SEQUENCE: At 3 T, MPRAGE, T2 -weighted SPACE, SPACE FLAIR, and SWI were acquired at 9-fold acceleration using Wave-CAIPI and for comparison at 2-4-fold acceleration using conventional GRAPPA.

ASSESSMENT: Extensive simulations were performed to optimize the Wave-CAIPI protocol and minimize both g-factor noise amplification and potential T1 /T2 blurring artifacts. Moreover, refinements in the autocalibrated reconstruction of Wave-CAIPI were developed to ensure high-quality reconstructions in the presence of gradient imperfections. In a randomized and blinded fashion, three neuroradiologists assessed the diagnostic quality of the optimized 6-minute Wave-CAIPI exam and compared it to the roughly 3× slower GRAPPA accelerated protocol using both an individual and head-to-head analysis.

STATISTICAL TEST: A noninferiority test was used to test whether the diagnostic quality of Wave-CAIPI was noninferior to the GRAPPA acquisition, with a 15% noninferiority margin.

RESULTS: Among all sequences, Wave-CAIPI achieved negligible g-factor noise amplification (gavg  ≤ 1.04) and burring artifacts from T1 /T2 relaxation. Improvements of our autocalibration approach for gradient imperfections enabled increased robustness to gradient mixing imperfections in tilted-field of view (FOV) prescriptions as well as variations in gradient and analog-to-digital converter (ADC) sampling rates. In the clinical evaluation, Wave-CAIPI achieved similar mean scores when compared with GRAPPA (MPRAGE: ØW  = 4.03, ØG  = 3.97; T2 w SPACE: ØW  = 4.00, ØG  = 4.00; SPACE FLAIR: ØW  = 3.97, ØG  = 3.97; SWI: ØW  = 3.93, ØG  = 3.83) and was statistically noninferior (N = 30, P < 0.05 for all sequences).

DATA CONCLUSION: The proposed volumetric brain exam retained comparable image quality when compared with the much longer conventional protocol.

LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2019.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app