Add like
Add dislike
Add to saved papers

Contribution of trace metallic elements to weakly contaminated lacustrine sediments: effects on benthic and pelagic organisms through multi-species laboratory bioassays.

Ecotoxicology 2019 Februrary 8
Surficial sediments exhibit higher levels of contamination than overlying water, especially from persistent contaminants such as trace metallic elements (TMEs). While sediments could in turn act as sources of contamination for the water column, their ecotoxicology is yet rarely assessed in a multi-compartments perspective. This study aims at assessing the response of benthic and pelagic organisms exposed to weakly contaminated sediments using a multi-species laboratory assay by focusing on TMEs (Cd, Cr, Cu, Ni, Pb, and Zn) contamination. Chironomus riparius larvae, Daphnia magna, and Lemna minor were simultaneously exposed for 10 days to six sediments sampled from the littoral of a large French lake (Lake Bourget). The endpoints consisted in the survival and growth rates and the bioconcentration factor (BCF). Significant negative relationships between sediment TME concentrations and survival rates of C. riparius and growth rates of C. riparius and D. magna suggested that both benthic and pelagic macro-invertebrates were impacted by sediment contamination, which was not observed in L. minor. Significant relationships of the sediment with the internal TME concentrations were positive while negative with the BCFs, suggesting an increase in biological regulation processes in all organisms with the increase of sediment TME concentrations. These results underline the importance of including both benthic and pelagic organisms in ecotoxicological assessment of low contaminated sediments and the relevance of the relationship BCFs/sediment contamination as prior biomarkers than higher life history traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app