Add like
Add dislike
Add to saved papers

Irbesartan suppresses cardiac toxicity induced by doxorubicin via regulating the p38-MAPK/NF-κB and TGF-β1 pathways.

Doxorubicin (DOX) so far continues to be one of the most potent and effective anticancer drugs. Therefore, it is still needed to search for a safe and effective therapy that can opposite DOX-induced cardiotoxicity. Irbesartan (IRB), an angiotensin II receptor blocker, has a wide-ranging variety of biological activities. The present study was designed to explore the possible protective effects of IRB against DOX-induced cardiotoxicity and the underlying mechanisms. Rats were divided into four groups: control, IRB (40 mg/kg, orally/daily) for 3 weeks, DOX (2.5 mg/kg, intraperitoneally/ three times weekly) for 2 weeks to obtain cumulative dose of 15 mg/kg, and finally IRB + DOX group. IRB inhibited cardiotoxicity induced by DOX which was evident by ECG changes, alterations of cardiac enzymes and histopathological changes. IRB improved DOX-induced alterations in oxidative/nitrosative status by decreasing lipid peroxidation and nitric oxide (NO) content in addition to increasing the antioxidant capacity. In addition, DOX triggers the cardiac expression of tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB) where IRB diminished DOX-induced alterations in theses parameters. Moreover, DOX significantly increase the expression levels of caspase-3 and transforming growth factor-beta 1 (TGF-β1), while IRB exhibited anti-apoptotic and anti-fibrotic effects where it abolished these elevations. Meanwhile, DOX-induced activation of p38-mitogen activated protein kinase (p38-MAPK) which was inhibited by IRB. Collectively, these results proposed that IRB afforded a significant protection against DOX-induced cardiac damage by means of antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic remodeling mechanisms. These mechanisms are possibly mediated, at least in part, by alterations of TGF-β1/p38-MAPK/NF-κB signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app