Add like
Add dislike
Add to saved papers

High-speed X-ray imaging of the Leidenfrost collapse.

Scientific Reports 2019 Februrary 8
The Leidenfrost layer is characterized by an insulating vapor film between a heated surface and an ambient liquid. The collapse of this film has been canonically theorized to occur from an interfacial instability between the liquid and vapor phases. The interfacial instability alone, however, is insufficient to explain the known influence of the surface on the film collapse process. In this work, we provide visual evidence for two key mechanisms governing the film collapse: the interfacial instability, and the nucleation of vapor upon multiple non-terminal liquid-solid contacts. These results were obtained by implementing high-speed X-ray imaging of the film collapse on a heated sphere submerged in liquid-water. The X-ray images were synchronized with a second high-speed visible light camera and two thermocouples to provide insight into the film formation and film collapse processes. Lastly, the dynamic film thickness was quantified by analysis of the X-ray images. This helped assess the influence of surface roughness on the disruption of the film. The results of this work encourage further investigation into non-linear stability theory to consolidate the role of the surface on the liquid-vapor interface during the film collapse process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app