Add like
Add dislike
Add to saved papers

Effects of zinc chloride-silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism.

Scientific Reports 2019 Februrary 8
The hygroexpansion and anisotropy of wood limit its application in construction and wood products industry. Zinc chloride-silicone oil was use to decrease the hygroscopicity and improve the dimensional stability of wood at 80 °C, 140 °C, 160 °C and 180 °C. The effects of the treatment on the dimensional stability, chemical structure, thermal degradation, morphology of wood were evaluated, and the mechanism was determined. Results indicated that the zinc chloride-silicone oil treatment at 80 °C improved the dimensional stability and decreased the hygroscopicity of wood. The tangential, radial, and volumetric swelling coefficients of the treated wood decreased by 9.7%, 33.5%, and 18.2%, respectively, relative to those of the untreated wood. Zinc chloride-silicone oil treatment also changed the chemical structure of wood by degrading the wood components and decreasing the moisture absorption groups. Moreover, zinc chloride-silicone oil treatment significantly influenced the thermal degradation of wood, as samples treated with zinc chloride-silicone oil at 140 °C, 160 °C and 180 °C presented sharp peaks around 511 °C, 501 °C and 473 °C. The control group exhibited a more common derivative thermogravimetric curve with a sharp peak at 375 °C. In addition, the silicone oil could impregnate wood, occlude moisture passage, and prevent the movement of moisture in wood. This method can be applied in building and wood industries to expand the applications of wood products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app