Add like
Add dislike
Add to saved papers

Medial septal stimulation increases seizure threshold and improves cognition in epileptic rats.

Brain Stimulation 2019 January 18
BACKGROUND: Temporal lobe epilepsy is most prevalent among focal epilepsies, and nearly one-third of patients are refractory to pharmacological intervention. Persistent cognitive and neurobehavioral comorbidities also occur due to the recurrent nature of seizures and medication-related side effects.

HYPOTHESIS: Electrical neuromodulation is an effective strategy to reduce seizures both in animal models and clinically, but its efficacy to modulate cognition remains unclear. We hypothesized that theta frequency stimulation of the medial septum would increase septohippocampal oscillations, increase seizure threshold, and improve spatial learning in a rat model of pilocarpine-induced epilepsy.

METHODS: Sham and pilocarpine rats were implanted with electrodes in the medial septum, hippocampus and prefrontal cortex. EEG was assessed days prior to and following stimulation. Sham and pilocarpine-treated rats received either no stimulation, continuous (throughout each behavior), or pre-task (one minute prior to each behavior) 7.7 Hz septal stimulation during the Barnes maze spatial navigation test and also during assessment of flurothyl-induced seizures.

RESULTS: Both continuous and pre-task stimulation prevented epilepsy-associated reductions in theta oscillations over time. Additionally, both stimulation paradigms significantly improved spatial navigation in the Barnes maze, reducing latency and improving search strategy. Moreover, stimulation led to significant increases in seizure threshold in pilocarpine-treated rats. There was no evidence of cognitive enhancement or increased seizure threshold in stimulated sham rats.

CONCLUSION: These findings have profound implications as theta stimulation of the septum represents a single frequency and target that has the potential to both improve cognition and reduce seizures for patients with refractory epilepsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app