Add like
Add dislike
Add to saved papers

Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy.

To develop a carrier for targeted drug delivery and triggered drug release in a reducing-tumor environment, reduction-sensitive hyaluronic acid-g-stearic acid (HCS) micelles were synthesized using a coupling agent. The HCS 40% was shown to have a more compact particle size than HCS 20% and the particle size of doxorubicin (DOX)-loaded HCS (HCSD) was increased relative to that of HCS micelles. The behavior of DOX release from HCSD showed that DOX was rapidly released in GSH (10 mM) solution. The site-specific targeting effect of HCSD nanoparticles was investigated by cellular uptake and competition assay at HCT116 and CT26 cell lines. An in vivo study of HCSD revealed that tumor suppression and site-specific targeted delivery of HCSD nanoparticles in HCT116-xenografted tumors were more superb than in the CT26-xenografted tumor. These results suggest that HCSD nanoparticles can be expected to have high therapeutic efficacy because they enable targeted drug delivery and rapid drug release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app