Add like
Add dislike
Add to saved papers

Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers.

Carbohydrate Polymers 2019 April 16
In this study, one-dimensional (1D) cellulose nanofibers (CNFs) were used to stabilize the dispersion of two-dimensional (2D) montmorillonite (MMT) plates in aqueous system. Then the prepared MMT/CNF solution was simultaneously merged into water soluble corn starch (CS) to obtain CS/MMT/CNF composite freestanding films through a casting method. The reinforcing effect from building blocks of MMT and CNF, interfacial interactions of hydrogen and covalent bonding together led to enhanced tensile strength and Young's modulus, reduced moisture susceptibility and increased transparency of the ternary CS nanocomposites. These extraordinary properties of the ternary nanocomposites clearly point towards a new strategy for designing and fabricating high-performance starch-based nanocomposites by using binary fillers with different geometric shapes and aspect ratio. This kind of ternary nanocomposite can be widely used in food packing and preservation as a biodegradable and green film.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app