Add like
Add dislike
Add to saved papers

Compensating for influence of laser-frequency-drift in phase-sensitive OTDR with twice differential method.

Optics Express 2019 Februrary 5
The frequency-drift of laser source is a crucial factor for influencing the performance of the phase-sensitive optical time domain reflectometer (Φ-OTDR). It induces signal fluctuation and severely limits the measurement capacity for low frequency. In this paper, a twice differential method is proposed to compensate for the influence of the laser-frequency-drift in Φ-OTDR. It uses the differential signal between two points on the sensing fiber as a reference signal and then subtracts the reference signal from the main signal to obtain the final result. In the experiment, the signal fluctuation induced by laser-frequency-drift is decreased by more than 95%. A vibration with a 0.1 Hz frequency on a 6 km sensing fiber is detected with 10 m spatial resolution and sensitivity is estimated to be 5.9 nε. With this method we also successfully measured the process of a stepper motor stretching a fiber section. This method will expand the scope of application of Φ-OTDR in the fields, which require high sensitivity and low frequency response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app