Add like
Add dislike
Add to saved papers

Intestinal clock system regulates skeletal homeostasis.

JCI Insight 2019 Februrary 8
The circadian clock network is an evolutionally conserved system involved in the regulation of metabolic homeostasis; however, its impacts on skeletal metabolism remain largely unknown. We herein demonstrated that circadian clock network in the intestines plays pivotal roles in skeletal metabolism such that the lack of Bmal1 gene in the intestines (Bmal1Int-/- mice) caused bone loss with bone resorption being activated and bone formation suppressed. Mechanistically, Clock interaction with Vitamin D receptor (Vdr) accelerated its binding to VDR response element by enhancing histone acetylation in a circadian-dependent manner, and this was lost in Bmal1Int-/- mice because nuclear translocation of Clock required the presence of Bmal1. Accordingly, the rhythmic expression of Vdr-target genes involved in transcellular calcium (Ca) absorption was created, and this was not observed in Bmal1Int-/- mice. As a result, transcellular Ca absorption was impaired and bone resorption was activated in Bmal1Int-/- mice. Additionally, sympathetic tone, the activation of which suppresses bone formation, was elevated through afferent vagal nerves in Bmal1Int-/- mice, the blockade of which partially recovered bone loss by increasing bone formation and suppressing bone resorption in Bmal1Int-/- mice. These results demonstrate that the intestinal circadian system regulates skeletal bone homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app