Add like
Add dislike
Add to saved papers

Postnatal undernutrition alters adult female mouse cardiac structure and function leading to limited exercise capacity.

Journal of Physiology 2019 Februrary 8
KEY POINTS: Impaired growth during fetal life can reprogramme heart development and increase the risk for long-term cardiovascular dysfunction. It is uncertain if the developmental window during which the heart is vulnerable to reprogramming as a result of inadequate nutrition extends into the postnatal period. We found that adult female mice that had been undernourished only from birth to 3 wk of age had disproportionately smaller hearts compared to males with thinner ventricle walls and more mononucleated cardiomyocytes. In females, but not males, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited and maximal exercise capacity was compromised. These data suggest that the developmental window during which the heart is vulnerable to reprogramming by inadequacies in nutrient intake may extend into postnatal life and such individuals could be at increased risk for a cardiac event as a result of strenuous exercise.

ABSTRACT: Adults who experienced undernutrition during critical windows of development are at increased risk for cardiovascular disease. The contribution of cardiac function to this increased disease risk is uncertain. We evaluated the effect of a short episode of postnatal undernutrition on cardiovascular function in mice at the whole animal, organ, and cellular levels. Pups born to control mouse dams were suckled from birth to postnatal day (PN) 21 on dams fed either a control (20% protein) or a low protein (8% protein) isocaloric diet. After PN21 offspring were fed the same control diet until adulthood. At PN70 VO2max was measured by treadmill test. At PN80 cardiac function was evaluated by echocardiography and Doppler analysis at rest and following β-adrenergic stimulation. Isolated cardiomyocyte nucleation and Ca2+ transients (with and without β-adrenergic stimulation) were measured at PN90. Female mice that were undernourished and then refed (PUN), unlike male mice, had disproportionately smaller hearts and their exercise capacity, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited. A reduced left ventricular end diastolic volume, impaired early filling, and decreased stored energy at the beginning of diastole contributed to these impairments. Female PUN mice had more mononucleated cardiomyocytes; under resting conditions binucleated cells had a functional profile suggestive of increased basal adrenergic activation. Thus, a brief episode of early postnatal undernutrition in the mouse can produce persistent changes to cardiac structure and function that limit exercise/functional capacity and thereby increase the risk for the development of a wide variety of cardiovascular morbidities. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app