Add like
Add dislike
Add to saved papers

Genome sequence of the H2-producing Clostridium beijerinckii strain Br21 isolated from a sugarcane vinasse treatment plant.

We report on the nearly complete genome sequence of Clostridium beijerinckii strain Br21, formerly isolated from a sugarcarne vinasse wastewater treatment plant. The resulting genome is ca. 5.9 Mbp in length and resembles the size of previously published C. beijerinckii genomes. We annotated the genome sequence and predicted a total of 5323 genes. Strain Br21 has a genetic toolkit that allows it to exploit diverse sugars that are often found after lignocellulosic biomass pretreatment to yield products of commercial interest. Besides the whole set of genes encoding for enzymes underlying hydrogen production, the genome of the new strain includes genes that enable carbon sources conversion into butanol, ethanol, acetic acid, butyric acid, and the chemical block 1,3-propanediol, which is used to obtain polymers. Moreover, the genome of strain Br21 has a higher number of ORFs with predicted beta-glucosidase activity as compared to other C. beijerinckii strains described in the KEGG database. These characteristics make C. beijerinckii strain Br21 a remarkable candidate for direct use in biotechnological processes and attest that it is a potential biocatalyst supplier.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app