Add like
Add dislike
Add to saved papers

Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes.

JCI Insight 2019 Februrary 8
Myotonic dystrophy (DM) is the most common autosomal dominant muscular dystrophy and encompasses both skeletal muscle and cardiac complications. Myotonic dystrophy is nucleotide repeat expansion disorder in which type 1 (DM1) is due to a trinucleotide repeat expansion on chromosome 19 and type 2 (DM2) arises from a tetranucleotide repeat expansion on chromosome 3. Developing representative models of myotonic dystrophy in animals has been challenging due to instability of nucleotide repeat expansions, especially for DM2 which is characterized by nucleotide repeat expansions often greater than 5000 copies. To investigate mechanisms of human DM, we generated cellular models of DM1 and DM2. We used regulated MyoD expression to reprogram urine-derived cells into myotubes. In this myogenic cell model, we found impaired dystrophin expression, MBNL foci, and aberrant splicing in DM1 but not in DM2 cells. We generated induced pluripotent stem cells (iPSC) from healthy controls, DM1 and DM2 subjects and differentiated these into cardiomyocytes. DM1 and DM2 cells displayed an increase in RNA foci concomitant with cellular differentiation. IPSC-derived cardiomyocytes from DM1 but not DM2 had aberrant splicing of known target genes and MBNL sequestration. High resolution imaging revealed tight association between MBNL clusters and RNA FISH foci in DM1. Ca2+ transients differed between DM1 and DM2 IPSC-derived cardiomyocytes and each differed from healthy control cells. RNA-sequencing from DM1 and DM2 iPSC-derived cardiomyocytes revealed distinct misregulation of gene expression as well as differential aberrant splicing patterns. Together these data support that DM1 and DM2, despite some shared clinical and molecular features, have distinct pathological signatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app