Add like
Add dislike
Add to saved papers

Manipulation of Supramolecular Columnar Structures of H-Bonded Donor-Acceptor Units via Geometrical Nanoconfinement.

Ambipolar organic semiconductors are considered promising for organic electronics because of their unusual electric properties, but many hurdles remain before they can be used for practical applications, especially because their orientation is hard to control. Here, we demonstrate a method to control the orientation of columnar structures, based on a hydrogen (H)-bonded donor-acceptor complex between a star-shaped tris(triazolyl)triazine and triphenylene-containing benzoic acid, using physicochemical nanoconfinement. The molecular configuration and supramolecular columnar assemblies in a one-dimensional porous anodic aluminium oxide (AAO) film were dramatically modulated by controlling the pore-size and by chemical modification of the inner surface of the porous AAO film. In situ experiments using grazing-incidence X-ray diffraction (GIXRD) were carried out to investigate the structural evolution produced at the nanometer scale by varying physicochemical conditions. The resulting highly ordered nanostructures may open a new pathway to effectively control the alignment of liquid crystal ambipolar semiconductors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app