Add like
Add dislike
Add to saved papers

Degradation of UV-filter Benzophenon-3 in aqueous solution using TiO 2 coated on quartz tubes.

Background: Benzophenone-3 (BP-3), one of the emerging pollutants, is commercially synthesized as UV filter used in cosmetics and other personal care products and its occurrence in the aquatic environment has widely been reported. The goal of this study was to enhance an AOP method for degradation of UV filter Benzophenone-3 in aqueous solutions .

Method: In this study, sol-gel method was applied to synthesis TiO2 nanoparticles. Subsequently, the nanoparticles were successfully coated on quartz tubes. The synthesized catalyst was characterized using XRD, FE-SEM and EDX analysis. Then, the efficiency of photocatalytic process using TiO2 coated quartz tubes for BP-3 degradation from synthetic and real aqueous solution was assessed.

Result: The optimum contact time and solution pH for the highest BP-3 degradation in the synthetic solution were found at 15 min and 10, respectively. The maximum degradation (98%) of BP-3 by photocatalytic process was observed at 1 mg/L initial BP-3 concentration using 225 cm2 of catalyst surface area. Among the three applied kinetic models, the experimental data were found to follow the first-order equation more closely with the rate constant of 0.2, 0.048 and 0.035 1/min for 1, 3 and 5 mg/L of initial BP-3 concentration, respectively. In order to investigate the potential of this process for real effluent, the treatment of swimming pool water and wastewater treatment plant was examined and BP-3 degradation close to 88% and 32.1 was achieved, respectively.

Conclusion: Based on the obtained data, the photocatalytic process could successfully be applied for water treatment in swimming pools and other effluent containing BP-3 with low turbidity. The advantage of this study is that the synthesized catalyst can be used repeatedly needless to remove catalyst from the treated solution. In addition, AOPs can effectively eliminate organic compounds in aqueous phase, rather than transferring pollutants into another phase. The limitation of this study is that in solution with high turbidity photocatalytic degradation can be hampered and pre- treatment is needed to reduce turbidity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app