Add like
Add dislike
Add to saved papers

Specific drug delivery efficiently induced human breast tumor regression using a lipoplex by non-covalent association with anti-tumor antibodies.

BACKGROUND: A cationic liposome-PEG-PEI complex (LPPC) was employed as a carrier for achieving targeted delivery of drug to human epidermal growth factor receptor-2 (HER2/neu)-expressing breast cancer cells. LPPC can be easily loaded with an anti-tumor drug and non-covalently associated with an anti-tumor antibody such as Herceptin that is clinically used to rapidly form immunoparticles within 1 h.

RESULTS: Drug-loaded LPPC have an average size about 250 nm and a zeta potential of about 40 mV. Herceptin was complexed onto surface of the LPPC to form the drug/LPPC/Herceptin complexes. The size of curcumin/LPPC/Herceptin complexes were 280 nm and the zeta potentials were about 23 mV. Targeting ability of this delivery system was demonstrated through specific binding on surface of cells and IVIS images in vivo, which showed specific binding in HER2-positive SKBR3 cells as compared to HER2-negative Hs578T cells. Only the drug/LPPC/Herceptin complexes displayed dramatically increased the cytotoxic activity in cancer cells. Both in vitro and in vivo results indicated that Herceptin adsorbed on LPPC directed the immunocomplex towards HER2/neu-positive cells but not HER2/neu-negative cells. The complexes with either component (curcumin or doxorubicin) used in the LPPC-delivery system provided a better therapeutic efficacy compared to the drug treatment alone and other treatment groups, including clinical dosages of Herceptin and LipoDox, in a xenografted model.

CONCLUSIONS: LPPC displays important clinical implications by easily introducing a specific targeting characteristic to drugs utilized for breast cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app