Add like
Add dislike
Add to saved papers

A benzimidazole-based ruthenium(IV) complex inhibits Pseudomonas aeruginosa biofilm formation by interacting with siderophores and the cell envelope, and inducing oxidative stress.

Biofouling 2019 Februrary 8
Pseudomonas aeruginosa biofilm-associated infections are a serious medical problem, and new compounds and therapies acting through novel mechanisms are much needed. Herein, the authors report a ruthenium(IV) complex that reduces P. aeruginosa PAO1 biofilm formation by 84%, and alters biofilm morphology and the living-to-dead cell ratio at 1 mM concentration. Including the compound in the culture medium altered the pigments secreted by PAO1, and fluorescence spectra revealed a decrease in pyoverdine. Scanning electron microscopy showed that the ruthenium complex did not penetrate the bacterial cell wall, but accumulated on external cell structures. Fluorescence quenching experiments indicated strong binding of the ruthenium complex to both plasmid DNA and bovine serum albumin. Formamidopyrimidine DNA N-glycosylase (Fpg) protein digestion of plasmid DNA isolated after ruthenium(IV) complex treatment revealed the generation of oxidative stress, which was further proved by the observed upregulation of catalase and superoxide dismutase gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app