Add like
Add dislike
Add to saved papers

Search for potential reading frameshifts in cds from Arabidopsis thaliana and other genomes.

A new mathematical method for potential reading frameshift detection in protein-coding sequences (cds) was developed. The algorithm is adjusted to the triplet periodicity of each analysed sequence using dynamic programming and a genetic algorithm. This does not require any preliminary training. Using the developed method, cds from the Arabidopsis thaliana genome were analysed. In total, the algorithm found 9,930 sequences containing one or more potential reading frameshift(s). This is ∼21% of all analysed sequences of the genome. The Type I and Type II error rates were estimated as 11% and 30%, respectively. Similar results were obtained for the genomes of Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Rattus norvegicus and Xenopus tropicalis. Also, the developed algorithm was tested on 17 bacterial genomes. We compared our results with the previously obtained data on the search for potential reading frameshifts in these genomes. This study discussed the possibility that the reading frameshift seems like a relatively frequently encountered mutation; and this mutation could participate in the creation of new genes and proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app