Add like
Add dislike
Add to saved papers

Bis(1,4-dihydro-2-methyl-1-phenyl-4-thioxo-3-pyridiolato)zinc(II) exhibits strong cytotoxicity and a high intracellular accumulation in cultured vascular endothelial cells.

Although cytotoxicity of inorganic metals has been well investigated, little is known about the cytotoxicity of organic-inorganic hybrid molecules. The cytotoxicity of zinc complexes was evaluated using a culture system of vascular endothelial cells. We found that bis(1,4-dihydro-2-methyl-1-phenyl-4-thioxo-3-pyridiolato)zinc(II), termed Zn-06, exhibited strong cytotoxicity in vascular smooth muscle cells, epithelial cells, fibroblastic cells, and vascular endothelial cells. This study showed that the tetracoordinate structure of the Zn-06 molecule, which contains two sulfur and two oxygen atoms attached to the zinc atom, facilitated its accumulation within vascular endothelial cells whereas the whole structure of the zinc complex was involved in its cytotoxicity in the cells. The present data suggest that a part of the structure, especially the binding site of the metal atom, was responsible for accumulation of zinc complexes, and the entire structure is responsible for their cytotoxicity in vascular endothelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app