Add like
Add dislike
Add to saved papers

MiR-29a inhibits cell proliferation and migration by targeting the CDC42/PAK1 signaling pathway in cervical cancer.

Anti-cancer Drugs 2019 Februrary 5
Cervical cancer is the second most common gynecological malignancy worldwide and the tumorigenesis mechanisms of cervical cancer are still unclear. This study aimed to reveal the role of miR-29a in cervical cancer. The expression level of miR-29a and CDC42 was measured using qRT-PCR. Cell proliferation, apoptosis, migration, and invasion were detected using colony formation, flow cytometry analysis, wound-healing assay, and Transwell assay, respectively. Luciferase reporter assay was used to determine the binding of miR-29a with CDC42. CDC42/p21-activated kinase 1 (PAK1) pathway-related proteins were measured by western blotting. MiR-29a was downregulated and CDC42 was upregulated in cervical cancer cells. Luciferase reporter assay showed that miR-29a negatively regulated the expression of CDC42 by directly targeting 3'-UTR of CDC42. Cell proliferation, migration, and invasion were markedly inhibited, whereas cell apoptosis was significantly increased in Hela and CaSki cells transfected with miR-29a mimics. These effects were partly recovered by CDC42 overexpression. Protein levels of PAK1, p-PAK1, p-LIMK, and p-cofilin were significantly downregulated by miR-29a mimics, which was reversed by CDC42 overexpression and was increased by the miR-29a inhibitor. MiR-29a inhibited cell proliferation, migration, and invasion, as well as promoted cell apoptosis through repressing the PAK1/LIMK signaling pathway by targeting CDC42 in cervical cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app